Dissecting non-coding RNA mechanisms in cellulo by Single-molecule High-Resolution Localization and Counting.

نویسندگان

  • Sethuramasundaram Pitchiaya
  • Vishalakshi Krishnan
  • Thomas C Custer
  • Nils G Walter
چکیده

Non-coding RNAs (ncRNAs) recently were discovered to outnumber their protein-coding counterparts, yet their diverse functions are still poorly understood. Here we report on a method for the intracellular Single-molecule High-Resolution Localization and Counting (iSHiRLoC) of microRNAs (miRNAs), a conserved, ubiquitous class of regulatory ncRNAs that controls the expression of over 60% of all mammalian protein coding genes post-transcriptionally, by a mechanism shrouded by seemingly contradictory observations. We present protocols to execute single particle tracking (SPT) and single-molecule counting of functional microinjected, fluorophore-labeled miRNAs and thereby extract diffusion coefficients and molecular stoichiometries of micro-ribonucleoprotein (miRNP) complexes from living and fixed cells, respectively. This probing of miRNAs at the single molecule level sheds new light on the intracellular assembly/disassembly of miRNPs, thus beginning to unravel the dynamic nature of this important gene regulatory pathway and facilitating the development of a parsimonious model for their obscured mechanism of action.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intracellular single molecule microscopy reveals two kinetically distinct pathways for microRNA assembly.

MicroRNAs (miRNAs) associate with components of the RNA-induced silencing complex (RISC) to assemble on mRNA targets and regulate protein expression in higher eukaryotes. Here we describe a method for the intracellular single-molecule, high-resolution localization and counting (iSHiRLoC) of miRNAs. Microinjected, singly fluorophore-labelled, functional miRNAs were tracked within diffusing parti...

متن کامل

SOX2OT, a long non-coding RNA involved in autophagy regulation

Summary: SOX2 overlapping transcript (SOX2OT) is a long non-coding RNA associated with cancer pathogenesis. It contributes to a variety of cellular functions and recent evidence propounds its association with autophagy process. It has been showed that SOX2OT can regulate the expression of different autophagy associated factors in human cells with different mechanisms, however more remains to ...

متن کامل

In vitro labeling strategies for in cellulo fluorescence microscopy of single ribonucleoprotein machines.

RNA plays a fundamental, ubiquitous role as either substrate or functional component of many large cellular complexes-"molecular machines"-used to maintain and control the readout of genetic information, a functional landscape that we are only beginning to understand. The cellular mechanisms for the spatiotemporal organization of the plethora of RNAs involved in gene expression are particularly...

متن کامل

In cellulo Evaluation of Phototransformation Quantum Yields in Fluorescent Proteins Used As Markers for Single-Molecule Localization Microscopy

Single-molecule localization microscopy of biological samples requires a precise knowledge of the employed fluorescent labels. Photoactivation, photoblinking and photobleaching of phototransformable fluorescent proteins influence the data acquisition and data processing strategies to be used in (Fluorescence) Photoactivation Localization Microscopy ((F)-PALM), notably for reliable molecular cou...

متن کامل

Transient expression of coding and non-coding regions of PVY confer resistance to virus infection

One of the most efficient mechanisms by which plants protect themselves from invading virusesis the specific RNA-dependent silencing pathway termed post-transcriptional gene silencing(PTGS). In this mechanism, resistance to a virus is engineered through the expression of asegment of the virus genomein transgenic plants. Potato VirusY (PVY) is one of the mostdamaging viruses of potato, infecting...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Methods

دوره 63 2  شماره 

صفحات  -

تاریخ انتشار 2013